[ad_1]
Rice, L. B. Federal funding for the research of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197, 1079–1081 (2008).
Google Scholar
Web page, M. G. & Bush, Okay. Discovery and improvement of recent antibacterial brokers concentrating on Gram-negative micro organism within the period of pandrug resistance: is the longer term promising? Curr. Opin. Pharmacol. 18, 91–97 (2014).
Google Scholar
Lou, H. et al. Altered antibiotic transport in OmpC mutants remoted from a collection of medical strains of multi-drug resistant E. coli. PLoS ONE. 6, 25825 (2011).
Rocker, A. et al. International developments in proteome reworking of the outer membrane modulate antimicrobial permeability in Klebsiella pneumoniae. mBio 11, 00603–00620 (2020).
Ma, P., Laibinis, H. H., Ernst, C. M. & Hung, D. T. Carbapenem resistance brought on by high-level expression of OXA-663 β-lactamase in an OmpK36-Poor Klebsiella pneumoniae medical isolate. Antimicrob. Brokers Chemother. 62, 01281–18 (2018).
Hamzaoui, Z. et al. Position of affiliation of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC genes in conferring carbapenem resistance amongst non-carbapenemase-producing Klebsiella pneumoniae. Int. J. Antimicrob. Brokers 52, 898–905 (2018).
Google Scholar
Clancy, C. J. et al. Mutations of the ompK36 porin gene and promoter influence responses of sequence kind 258, KPC-2-producing Klebsiella pneumoniae strains to doripenem and doripenem-colistin. Antimicrob. Brokers Chemother. 57, 5258–5265 (2013).
Google Scholar
Tsai, Y. Okay., Liou, C. H., Fung, C. P., Lin, J. C. & Siu, L. Okay. Single or together antimicrobial resistance mechanisms of Klebsiella pneumoniae contribute to various susceptibility to totally different carbapenems. PLoS ONE 8, 79640 (2013).
Papagiannitsis, C. C. et al. OmpK35 and OmpK36 porin variants related to particular sequence forms of Klebsiella pneumoniae. J. Chemother. 25, 250–254 (2013).
Google Scholar
Novais, A. et al. Unfold of an OmpK36-modified ST15 Klebsiella pneumoniae variant throughout an outbreak involving a number of carbapenem-resistant Enterobacteriaceae species and clones. Eur. J. Clin. Microbiol. Infect. Dis. 31, 3057–3063 (2012).
Google Scholar
Shin, S. Y. et al. Resistance to carbapenems in sequence kind 11 Klebsiella pneumoniae is expounded to DHA-1 and lack of OmpK35 and/or OmpK36. J. Med. Microbiol. 61, 239–245 (2012).
Google Scholar
García-Fernández, A. et al. An ertapenem-resistant extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob. Brokers Chemother. 54, 4178–4184 (2010).
Google Scholar
Doménech-Sánchez, A. et al. Position of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob. Brokers Chemother. 47, 3332–3335 (2003).
Google Scholar
Hernández-Allés, S. et al. Relationship between outer membrane alterations and susceptibility to antimicrobial brokers in isogenic strains of Klebsiella pneumoniae. J. Antimicrob. Chemother. 46, 273–277 (2000).
Google Scholar
Chevalier, J., Pagès, J. M., Eyraud, A. & Malléa, M. Membrane permeability modifications are concerned in antibiotic resistance in Klebsiella pneumoniae. Biochem. Biophys. Res. Commun. 274, 496–499 (2000).
Google Scholar
Martínez-Martínez, L. et al. Roles of beta-lactamases and porins in actions of carbapenems and cephalosporins in opposition to Klebsiella pneumoniae. Antimicrob. Brokers Chemother. 43, 1669–1673 (1999).
Google Scholar
Hernández-Allés, S. et al. Porin expression in medical isolates of Klebsiella pneumoniae. Microbiology 145, 673–679 (1999).
Google Scholar
Martínez-Martínez, L. et al. In vivo collection of porin-deficient mutants of Klebsiella pneumoniae with elevated resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob. Brokers Chemother. 40, 342–388 (1996).
Google Scholar
Philippe, N. et al. In vivo evolution of bacterial resistance in two instances of Enterobacter aerogenes infections throughout remedy with imipenem. PLoS ONE 10, 0138828 (2015).
Thiolas, A., Bollet, C., La Scola, B., Raoult, D. & Pagès, J. M. Successive emergence of Enterobacter aerogenes strains proof against imipenem and colistin in a affected person. Antimicrob. Brokers Chemother. 49, 1354–1358 (2005).
Google Scholar
Bornet, C. et al. Omp35, a brand new Enterobacter aerogenes porin concerned in selective susceptibility to cephalosporins. Antimicrob. Brokers Chemother. 48, 2153–2158 (2004).
Google Scholar
Thiolas, A., Bornet, C., Davin-Régli, A., Pagès, J. M. & Bollet, C. Resistance to imipenem, cefepime, and cefpirome related to mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 317, 851–856 (2004).
Google Scholar
Dé, E. et al. A brand new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the most important porin. Mol. Microbiol. 41, 189–198 (2001).
Google Scholar
Bornet, C., Davin-Regli, A., Bosi, C., Pages, J. M. & Bollet, C. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 38, 1048–1052 (2000).
Google Scholar
Chevalier, J., Pagès, J. M. & Malléa, M. In vivo modification of porin exercise conferring antibiotic resistance to Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 266, 248–251 (1999).
Google Scholar
Mallea, M. et al. Porin alteration and lively efflux: two in vivo drug resistance methods utilized by Enterobacter aerogenes. Microbiology 144, 3003–3009 (1998).
Google Scholar
Charrel, R. N., Pagès, J. M., De Micco, P. & Mallea, M. Prevalence of outer membrane porin alteration in beta-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob. Brokers Chemother. 40, 2854–2858 (1996).
Google Scholar
Vergalli, J. et al. Porins and small-molecule translocation throughout the outer membrane of Gram-negative micro organism. Nat. Rev. Microbiol. 18, 164–176 (2020).
Google Scholar
Agyekum, A. et al. Predictability of phenotype in relation to frequent β-Lactam resistance mechanisms in Escherichia coli and Klebsiella pneumoniae. J. Clin. Microbiol. 54, 1243–1250 (2016).
Google Scholar
Martínez-Martínez, L. Prolonged-spectrum beta-lactamases and the permeability barrier. Clin. Microbiol. Infect. 14, 82–89 (2008).
Google Scholar
Nikaido, H. Molecular foundation of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).
Google Scholar
Sugawara, E., Kojima, S. & Nikaido, H. Klebsiella pneumoniae main porins OmpK35 and OmpK36 enable extra environment friendly diffusion of β-lactams than their Escherichia coli homologs OmpF and OmpC. J. Bacteriol. 198, 3200–3208 (2016).
Google Scholar
Cowan, S. W. et al. Crystal buildings clarify practical properties of two E. coli porins. Nature 358, 727–733 (1992).
Google Scholar
Baslé, A., Rummel, G., Storici, P., Rosenbusch, J. P. & Schirmer, T. Crystal construction of osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362, 933–942 (2006).
Google Scholar
Dutzler, R. et al. Crystal construction and practical characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Construction 7, 425–434 (1999).
Google Scholar
Benz, R., Schmid, A. & Hancock, R. E. Ion selectivity of gram-negative bacterial porins. J. Bacteriol. 162, 722–727 (1985).
Google Scholar
Yoshimura, F. & Nikaido, H. Diffusion of beta-lactam antibiotics by way of the porin channels of Escherichia coli Okay-12. Antimicrob. Brokers Chemother. 27, 84–92 (1985).
Google Scholar
Nikaido, H. & Rosenberg, E. Y. Porin channels in Escherichia coli: research with liposomes reconstituted from purified proteins. J. Bacteriol. 153, 241–252 (1983).
Google Scholar
Nikaido, H., Rosenberg, E. Y. & Foulds, J. Porin channels in Escherichia coli: research with beta-lactams in intact cells. J. Bacteriol. 153, 232–240 (1983).
Google Scholar
Kojima, S. & Nikaido, H. Excessive salt concentrations improve permeability by way of OmpC channels of Escherichia coli. J. Biol. Chem. 289, 26464–26473 (2014).
Google Scholar
Acosta-Gutiérrez, S. et al. Getting medicine into Gram-negative micro organism: rational guidelines for permeation by way of normal porins. ACS Infect. Dis. 4, 1487–1498 (2018).
Google Scholar
Ribeiro, A. R. & Schmidt, T. C. Willpower of acid dissociation constants (pKa) of cephalosporin antibiotics: computational and experimental approaches. Chemosphere 169, 524–533 (2017).
Google Scholar
Biedermann, F., Ghale, G., Hennig, A. & Nau, W. M. Fluorescent synthetic receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability. Commun. Biol. 3, 383 (2020).
Google Scholar
Barba-Bon, A. et al. Fluorescence monitoring of peptide transport pathways into massive and big vesicles by supramolecular host-dye reporter pairs. J. Am. Chem. Soc. 141, 20137–20145 (2019).
Google Scholar
Masi, M., Réfrégiers, M., Pos, Okay. M. & Pagès, J. M. Mechanisms of envelope permeability and antibiotic inflow and efflux in Gram-negative micro organism. Nat. Microbiol. 2, 17001 (2017).
Google Scholar
Mazzariol, A., Cornaglia, G. & Nikaido, H. Contributions of the AmpC beta-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli Okay-12 to beta-lactams. Antimicrob. Brokers Chemother. 44, 1387–1390 (2000).
Google Scholar
Vergalli, J. et al. Spectrofluorimetric quantification of antibiotic drug focus in bacterial cells for the characterization of translocation throughout bacterial membranes. Nat. Protoc. 13, 1348–1361 (2018).
Google Scholar
Dumont, E. et al. Antibiotics and efflux: mixed spectrofluorimetry and mass spectrometry to guage the involvement of focus and efflux exercise in antibiotic intracellular accumulation. J. Antimicrob. Chemother. 74, 58–65 (2019).
Google Scholar
Allam, A. et al. Microspectrofluorimetry to dissect the permeation of ceftazidime in Gram-negative micro organism. Sci. Rep. 7, 986 (2017).
Google Scholar
Pangeni, S. et al. Giant-peptide permeation by way of a membrane channel: understanding protamine translocation by way of CymA from Klebsiella oxytoca. Angew. Chem. Int. Ed. Engl. 60, 8089–8094 (2021).
Google Scholar
Sindelar, V. et al. Supramolecular meeting of two,7-dimethyldiazapyrenium and cucurbit[8]uril: a brand new fluorescent host for detection of catechol and dopamine. Chemistry 11, 7054–7059 (2005).
Google Scholar
Lovelle, M. et al. Interplay of cephalosporins with outer membrane channels of Escherichia coli. Revealing binding by fluorescence quenching and ion conductance fluctuations. Phys. Chem. Chem. Phys. 13, 1521–1530 (2011).
Google Scholar
Ghai, I. et al. Common technique to find out the flux of charged molecules by way of nanopores utilized to β-lactamase inhibitors and OmpF. J. Phys. Chem. Lett. 8, 1295–1301 (2017).
Google Scholar
Ghai, I. et al. Ampicillin permeation throughout OmpF, the most important outer-membrane channel in Escherichia coli. J. Biol. Chem. 293, 7030–7037 (2018).
Google Scholar
Bafna, J. A. et al. Kanamycin uptake into Escherichia coli is facilitated by OmpF and OmpC porin channels positioned within the outer membrane. ACS Infect. Dis. 6, 1855–1865 (2020).
Google Scholar
Suay-García, B. & Pérez-Gracia, M. T. Current and way forward for carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 8, 122 (2019).
Google Scholar
Kojima, S. & Nikaido, H. Permeation charges of penicillins point out that Escherichia coli porins operate principally as nonspecific channels. Proc. Natl Acad. Sci. USA 110, 2629–2934 (2013).
Richter, M. F. et al. Predictive compound accumulation guidelines yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).
Google Scholar
Prochnow, H. et al. Subcellular quantification of uptake in Gram-negative micro organism. Anal. Chem. 91, 1863–1872 (2019).
Google Scholar
James, C. E. et al. How beta-lactam antibiotics enter micro organism: a dialogue with the porins. PLoS ONE 4, 5453 (2009).
Mahendran, Okay. R., Kreir, M., Weingart, H., Fertig, N. & Winterhalter, M. Permeation of antibiotics by way of Escherichia coli OmpF and OmpC porins: screening for inflow on a single-molecule degree. J. Biomol. Display screen. 15, 302–307 (2010).
Google Scholar
Hajjar, E. et al. Towards screening for antibiotics with enhanced permeation properties by way of bacterial porins. Biochemistry 49, 6928–6935 (2010).
Google Scholar
Ferreira, R. J. & Kasson, P. M. Antibiotic uptake throughout Gram-negative outer membranes: higher predictions in direction of higher antibiotics. ACS Infect. Dis. 5, 2096–2104 (2019).
Google Scholar
Siu, L. Okay. Is OmpK35 particular for ceftazadime penetration? Antimicrob. Brokers Chemother. 45, 1601–1602 (2001).
Google Scholar
Rasheed, J. Okay. et al. Characterization of the extended-spectrum beta-lactamase reference pressure, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob. Brokers Chemother. 44, 2382–2388 (2000).
Google Scholar
Pagès, J. M., Peslier, S., Keating, T. A., Lavigne, J. P. & Nichols, W. W. Position of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob. Brokers Chemother. 60, 1349–1359 (2015).
Google Scholar
Pucci, M. J., Boice-Sowek, J., Kessler, R. E. & Dougherty, T. J. Comparability of cefepime, cefpirome, and cefaclidine binding affinities for penicillin-binding proteins in Escherichia coli Okay-12 and Pseudomonas aeruginosa SC8329. Antimicrob. Brokers Chemother. 35, 2312–2317 (1991).
Google Scholar
Sutaria, D. S. et al. First penicillin-binding protein occupancy patterns of β-lactams and β-lactamase inhibitors in Klebsiella pneumoniae. Antimicrob. Brokers Chemother. 62, 00282–18 (2018).
Dougherty, T. J., Kennedy, Okay., Kessler, R. E. & Pucci, M. J. Direct quantitation of the variety of particular person penicillin-binding proteins per cell in Escherichia coli. J. Bacteriol. 178, 6110–6115 (1996).
Google Scholar
Wang, J., Terrasse, R., Bafna, J. A., Benier, L. & Winterhalter, M. Electrophysiological characterization of transport throughout outer-membrane channels from Gram-negative micro organism in presence of lipopolysaccharides. Angew. Chem. Int. Ed. Engl. 59, 8517–8521 (2020).
Google Scholar
Band, V. I. & Weiss, D. S. Heteroresistance: a reason behind unexplained antibiotic remedy failure? PLoS Pathog. 15, 1007726 (2019).
Dupont, M., James, C. E., Chevalier, J. & Pagès, J. M. An early response to environmental stress includes regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob. Brokers Chemother. 51, 3190–3198 (2007).
Google Scholar
Ferrand, A., Vergalli, J., Pagès, J. M. & Davin-Regli, A. An intertwined community of regulation controls membrane permeability together with drug inflow and efflux in Enterobacteriaceae. Microorganisms 8, 833 (2020).
Google Scholar
Stewart, J. C. Colorimetric dedication of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 104, 10–14 (1980).
Google Scholar
Biró, I., Pezeshki, S., Weingart, H., Winterhalter, M. & Kleinekathöfer, U. Evaluating the temperature-dependent conductance of the 2 structurally comparable E. coli porins OmpC and OmpF. Biophys. J. 98, 1830–1839 (2010).
Google Scholar
Lamichhane, U. et al. Peptide translocation by way of the mesoscopic channel: binding kinetics on the single molecule degree. Eur. Biophys. J. 42, 363–369 (2013).
Google Scholar
[ad_2]
Supply hyperlink