Cephalosporin translocation throughout enterobacterial OmpF and OmpC channels, a filter throughout the outer membrane

[ad_1]

  • Rice, L. B. Federal funding for the research of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J. Infect. Dis. 197, 1079–1081 (2008).

    PubMed 

    Google Scholar 

  • Web page, M. G. & Bush, Okay. Discovery and improvement of recent antibacterial brokers concentrating on Gram-negative micro organism within the period of pandrug resistance: is the longer term promising? Curr. Opin. Pharmacol. 18, 91–97 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Lou, H. et al. Altered antibiotic transport in OmpC mutants remoted from a collection of medical strains of multi-drug resistant E. coli. PLoS ONE. 6, 25825 (2011).

  • Rocker, A. et al. International developments in proteome reworking of the outer membrane modulate antimicrobial permeability in Klebsiella pneumoniae. mBio 11, 00603–00620 (2020).

    Google Scholar 

  • Ma, P., Laibinis, H. H., Ernst, C. M. & Hung, D. T. Carbapenem resistance brought on by high-level expression of OXA-663 β-lactamase in an OmpK36-Poor Klebsiella pneumoniae medical isolate. Antimicrob. Brokers Chemother. 62, 01281–18 (2018).

    Google Scholar 

  • Hamzaoui, Z. et al. Position of affiliation of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC genes in conferring carbapenem resistance amongst non-carbapenemase-producing Klebsiella pneumoniae. Int. J. Antimicrob. Brokers 52, 898–905 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Clancy, C. J. et al. Mutations of the ompK36 porin gene and promoter influence responses of sequence kind 258, KPC-2-producing Klebsiella pneumoniae strains to doripenem and doripenem-colistin. Antimicrob. Brokers Chemother. 57, 5258–5265 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsai, Y. Okay., Liou, C. H., Fung, C. P., Lin, J. C. & Siu, L. Okay. Single or together antimicrobial resistance mechanisms of Klebsiella pneumoniae contribute to various susceptibility to totally different carbapenems. PLoS ONE 8, 79640 (2013).

    Google Scholar 

  • Papagiannitsis, C. C. et al. OmpK35 and OmpK36 porin variants related to particular sequence forms of Klebsiella pneumoniae. J. Chemother. 25, 250–254 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Novais, A. et al. Unfold of an OmpK36-modified ST15 Klebsiella pneumoniae variant throughout an outbreak involving a number of carbapenem-resistant Enterobacteriaceae species and clones. Eur. J. Clin. Microbiol. Infect. Dis. 31, 3057–3063 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Shin, S. Y. et al. Resistance to carbapenems in sequence kind 11 Klebsiella pneumoniae is expounded to DHA-1 and lack of OmpK35 and/or OmpK36. J. Med. Microbiol. 61, 239–245 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • García-Fernández, A. et al. An ertapenem-resistant extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae clone carries a novel OmpK36 porin variant. Antimicrob. Brokers Chemother. 54, 4178–4184 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Doménech-Sánchez, A. et al. Position of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob. Brokers Chemother. 47, 3332–3335 (2003).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernández-Allés, S. et al. Relationship between outer membrane alterations and susceptibility to antimicrobial brokers in isogenic strains of Klebsiella pneumoniae. J. Antimicrob. Chemother. 46, 273–277 (2000).

    PubMed 

    Google Scholar 

  • Chevalier, J., Pagès, J. M., Eyraud, A. & Malléa, M. Membrane permeability modifications are concerned in antibiotic resistance in Klebsiella pneumoniae. Biochem. Biophys. Res. Commun. 274, 496–499 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Martínez-Martínez, L. et al. Roles of beta-lactamases and porins in actions of carbapenems and cephalosporins in opposition to Klebsiella pneumoniae. Antimicrob. Brokers Chemother. 43, 1669–1673 (1999).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernández-Allés, S. et al. Porin expression in medical isolates of Klebsiella pneumoniae. Microbiology 145, 673–679 (1999).

    PubMed 

    Google Scholar 

  • Martínez-Martínez, L. et al. In vivo collection of porin-deficient mutants of Klebsiella pneumoniae with elevated resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrob. Brokers Chemother. 40, 342–388 (1996).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Philippe, N. et al. In vivo evolution of bacterial resistance in two instances of Enterobacter aerogenes infections throughout remedy with imipenem. PLoS ONE 10, 0138828 (2015).

    Google Scholar 

  • Thiolas, A., Bollet, C., La Scola, B., Raoult, D. & Pagès, J. M. Successive emergence of Enterobacter aerogenes strains proof against imipenem and colistin in a affected person. Antimicrob. Brokers Chemother. 49, 1354–1358 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bornet, C. et al. Omp35, a brand new Enterobacter aerogenes porin concerned in selective susceptibility to cephalosporins. Antimicrob. Brokers Chemother. 48, 2153–2158 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thiolas, A., Bornet, C., Davin-Régli, A., Pagès, J. M. & Bollet, C. Resistance to imipenem, cefepime, and cefpirome related to mutation in Omp36 osmoporin of Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 317, 851–856 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Dé, E. et al. A brand new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the most important porin. Mol. Microbiol. 41, 189–198 (2001).

    PubMed 

    Google Scholar 

  • Bornet, C., Davin-Regli, A., Bosi, C., Pages, J. M. & Bollet, C. Imipenem resistance of Enterobacter aerogenes mediated by outer membrane permeability. J. Clin. Microbiol. 38, 1048–1052 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevalier, J., Pagès, J. M. & Malléa, M. In vivo modification of porin exercise conferring antibiotic resistance to Enterobacter aerogenes. Biochem. Biophys. Res. Commun. 266, 248–251 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Mallea, M. et al. Porin alteration and lively efflux: two in vivo drug resistance methods utilized by Enterobacter aerogenes. Microbiology 144, 3003–3009 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Charrel, R. N., Pagès, J. M., De Micco, P. & Mallea, M. Prevalence of outer membrane porin alteration in beta-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob. Brokers Chemother. 40, 2854–2858 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vergalli, J. et al. Porins and small-molecule translocation throughout the outer membrane of Gram-negative micro organism. Nat. Rev. Microbiol. 18, 164–176 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Agyekum, A. et al. Predictability of phenotype in relation to frequent β-Lactam resistance mechanisms in Escherichia coli and Klebsiella pneumoniae. J. Clin. Microbiol. 54, 1243–1250 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez-Martínez, L. Prolonged-spectrum beta-lactamases and the permeability barrier. Clin. Microbiol. Infect. 14, 82–89 (2008).

    PubMed 

    Google Scholar 

  • Nikaido, H. Molecular foundation of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sugawara, E., Kojima, S. & Nikaido, H. Klebsiella pneumoniae main porins OmpK35 and OmpK36 enable extra environment friendly diffusion of β-lactams than their Escherichia coli homologs OmpF and OmpC. J. Bacteriol. 198, 3200–3208 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowan, S. W. et al. Crystal buildings clarify practical properties of two E. coli porins. Nature 358, 727–733 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Baslé, A., Rummel, G., Storici, P., Rosenbusch, J. P. & Schirmer, T. Crystal construction of osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362, 933–942 (2006).

    PubMed 

    Google Scholar 

  • Dutzler, R. et al. Crystal construction and practical characterization of OmpK36, the osmoporin of Klebsiella pneumoniae. Construction 7, 425–434 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Benz, R., Schmid, A. & Hancock, R. E. Ion selectivity of gram-negative bacterial porins. J. Bacteriol. 162, 722–727 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshimura, F. & Nikaido, H. Diffusion of beta-lactam antibiotics by way of the porin channels of Escherichia coli Okay-12. Antimicrob. Brokers Chemother. 27, 84–92 (1985).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nikaido, H. & Rosenberg, E. Y. Porin channels in Escherichia coli: research with liposomes reconstituted from purified proteins. J. Bacteriol. 153, 241–252 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nikaido, H., Rosenberg, E. Y. & Foulds, J. Porin channels in Escherichia coli: research with beta-lactams in intact cells. J. Bacteriol. 153, 232–240 (1983).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kojima, S. & Nikaido, H. Excessive salt concentrations improve permeability by way of OmpC channels of Escherichia coli. J. Biol. Chem. 289, 26464–26473 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acosta-Gutiérrez, S. et al. Getting medicine into Gram-negative micro organism: rational guidelines for permeation by way of normal porins. ACS Infect. Dis. 4, 1487–1498 (2018).

    PubMed 

    Google Scholar 

  • Ribeiro, A. R. & Schmidt, T. C. Willpower of acid dissociation constants (pKa) of cephalosporin antibiotics: computational and experimental approaches. Chemosphere 169, 524–533 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Biedermann, F., Ghale, G., Hennig, A. & Nau, W. M. Fluorescent synthetic receptor-based membrane assay (FARMA) for spatiotemporally resolved monitoring of biomembrane permeability. Commun. Biol. 3, 383 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barba-Bon, A. et al. Fluorescence monitoring of peptide transport pathways into massive and big vesicles by supramolecular host-dye reporter pairs. J. Am. Chem. Soc. 141, 20137–20145 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Masi, M., Réfrégiers, M., Pos, Okay. M. & Pagès, J. M. Mechanisms of envelope permeability and antibiotic inflow and efflux in Gram-negative micro organism. Nat. Microbiol. 2, 17001 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Mazzariol, A., Cornaglia, G. & Nikaido, H. Contributions of the AmpC beta-lactamase and the AcrAB multidrug efflux system in intrinsic resistance of Escherichia coli Okay-12 to beta-lactams. Antimicrob. Brokers Chemother. 44, 1387–1390 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vergalli, J. et al. Spectrofluorimetric quantification of antibiotic drug focus in bacterial cells for the characterization of translocation throughout bacterial membranes. Nat. Protoc. 13, 1348–1361 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Dumont, E. et al. Antibiotics and efflux: mixed spectrofluorimetry and mass spectrometry to guage the involvement of focus and efflux exercise in antibiotic intracellular accumulation. J. Antimicrob. Chemother. 74, 58–65 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Allam, A. et al. Microspectrofluorimetry to dissect the permeation of ceftazidime in Gram-negative micro organism. Sci. Rep. 7, 986 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pangeni, S. et al. Giant-peptide permeation by way of a membrane channel: understanding protamine translocation by way of CymA from Klebsiella oxytoca. Angew. Chem. Int. Ed. Engl. 60, 8089–8094 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sindelar, V. et al. Supramolecular meeting of two,7-dimethyldiazapyrenium and cucurbit[8]uril: a brand new fluorescent host for detection of catechol and dopamine. Chemistry 11, 7054–7059 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Lovelle, M. et al. Interplay of cephalosporins with outer membrane channels of Escherichia coli. Revealing binding by fluorescence quenching and ion conductance fluctuations. Phys. Chem. Chem. Phys. 13, 1521–1530 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Ghai, I. et al. Common technique to find out the flux of charged molecules by way of nanopores utilized to β-lactamase inhibitors and OmpF. J. Phys. Chem. Lett. 8, 1295–1301 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Ghai, I. et al. Ampicillin permeation throughout OmpF, the most important outer-membrane channel in Escherichia coli. J. Biol. Chem. 293, 7030–7037 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bafna, J. A. et al. Kanamycin uptake into Escherichia coli is facilitated by OmpF and OmpC porin channels positioned within the outer membrane. ACS Infect. Dis. 6, 1855–1865 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Suay-García, B. & Pérez-Gracia, M. T. Current and way forward for carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 8, 122 (2019).

    PubMed Central 

    Google Scholar 

  • Kojima, S. & Nikaido, H. Permeation charges of penicillins point out that Escherichia coli porins operate principally as nonspecific channels. Proc. Natl Acad. Sci. USA 110, 2629–2934 (2013).

    Google Scholar 

  • Richter, M. F. et al. Predictive compound accumulation guidelines yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prochnow, H. et al. Subcellular quantification of uptake in Gram-negative micro organism. Anal. Chem. 91, 1863–1872 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • James, C. E. et al. How beta-lactam antibiotics enter micro organism: a dialogue with the porins. PLoS ONE 4, 5453 (2009).

    Google Scholar 

  • Mahendran, Okay. R., Kreir, M., Weingart, H., Fertig, N. & Winterhalter, M. Permeation of antibiotics by way of Escherichia coli OmpF and OmpC porins: screening for inflow on a single-molecule degree. J. Biomol. Display screen. 15, 302–307 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Hajjar, E. et al. Towards screening for antibiotics with enhanced permeation properties by way of bacterial porins. Biochemistry 49, 6928–6935 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Ferreira, R. J. & Kasson, P. M. Antibiotic uptake throughout Gram-negative outer membranes: higher predictions in direction of higher antibiotics. ACS Infect. Dis. 5, 2096–2104 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Siu, L. Okay. Is OmpK35 particular for ceftazadime penetration? Antimicrob. Brokers Chemother. 45, 1601–1602 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasheed, J. Okay. et al. Characterization of the extended-spectrum beta-lactamase reference pressure, Klebsiella pneumoniae K6 (ATCC 700603), which produces the novel enzyme SHV-18. Antimicrob. Brokers Chemother. 44, 2382–2388 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pagès, J. M., Peslier, S., Keating, T. A., Lavigne, J. P. & Nichols, W. W. Position of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob. Brokers Chemother. 60, 1349–1359 (2015).

    PubMed 

    Google Scholar 

  • Pucci, M. J., Boice-Sowek, J., Kessler, R. E. & Dougherty, T. J. Comparability of cefepime, cefpirome, and cefaclidine binding affinities for penicillin-binding proteins in Escherichia coli Okay-12 and Pseudomonas aeruginosa SC8329. Antimicrob. Brokers Chemother. 35, 2312–2317 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sutaria, D. S. et al. First penicillin-binding protein occupancy patterns of β-lactams and β-lactamase inhibitors in Klebsiella pneumoniae. Antimicrob. Brokers Chemother. 62, 00282–18 (2018).

    Google Scholar 

  • Dougherty, T. J., Kennedy, Okay., Kessler, R. E. & Pucci, M. J. Direct quantitation of the variety of particular person penicillin-binding proteins per cell in Escherichia coli. J. Bacteriol. 178, 6110–6115 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J., Terrasse, R., Bafna, J. A., Benier, L. & Winterhalter, M. Electrophysiological characterization of transport throughout outer-membrane channels from Gram-negative micro organism in presence of lipopolysaccharides. Angew. Chem. Int. Ed. Engl. 59, 8517–8521 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Band, V. I. & Weiss, D. S. Heteroresistance: a reason behind unexplained antibiotic remedy failure? PLoS Pathog. 15, 1007726 (2019).

    Google Scholar 

  • Dupont, M., James, C. E., Chevalier, J. & Pagès, J. M. An early response to environmental stress includes regulation of OmpX and OmpF, two enterobacterial outer membrane pore-forming proteins. Antimicrob. Brokers Chemother. 51, 3190–3198 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrand, A., Vergalli, J., Pagès, J. M. & Davin-Regli, A. An intertwined community of regulation controls membrane permeability together with drug inflow and efflux in Enterobacteriaceae. Microorganisms 8, 833 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • Stewart, J. C. Colorimetric dedication of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 104, 10–14 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • Biró, I., Pezeshki, S., Weingart, H., Winterhalter, M. & Kleinekathöfer, U. Evaluating the temperature-dependent conductance of the 2 structurally comparable E. coli porins OmpC and OmpF. Biophys. J. 98, 1830–1839 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lamichhane, U. et al. Peptide translocation by way of the mesoscopic channel: binding kinetics on the single molecule degree. Eur. Biophys. J. 42, 363–369 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • [ad_2]

    Supply hyperlink